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Most human-computer interfaces are designed to run on a static platform (e.g. a
workstation with a monitor) in a static environment (e.g. an office). However,
with mobile devices becoming ubiquitous and capable of running applications
similar to those found on static devices, it is no longer valid to design static
interfaces. This paper describes a user-interface architecture which allows
interactors to be flexible about the way they are presented. This flexibility is
defined by the different input and output mechanisms used. An interactor may
use different mechanisms depending upon their suitability in the current
context, user preference and the resources available for presentation using that
mechanism.

Introduction

Szekely [1] describes four challenges that need to be met by human-computer
interface technologies. Interfaces need to be able to automatically adapt themselves to
support the user’s current task. Interfaces need to be able to support multiple
platforms. Interfaces should be tailorable to the users current needs. Interfaces should
be able to handle both input and output using multiple mechanisms. This paper
describes a toolkit of interactors which are designed to provide a solution to the last
three of these challenges, with an implementation which supports adaptable and
tailorable output. An interface’s support of multiple platforms and modalities
combined with ease of tailorability is gaining an increased significance due to mobile
devices becoming ubiquitous. It is no longer sufficient to design a human-computer
interface for a static platform such as a workstation in an office. Rather, interfaces
need to be able to adapt to different contexts of use. The interface may adapt in the
way it accepts input, or in the way it is presented to the user.  This adaption may
occur for two reasons, a change in the resources available to the widgets (resource
sensitivity) or a change in the context the platform is situated in (context sensitivity).
The resources available to the widgets may vary due to a change in platform, for
example from a workstation with a large monitor to a personal digital assistant (PDA)
with a limited screen size; but it could also be due to the removal of a resource or
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greater demand being placed on a resource. For example a MIDI synthesiser used to
provide audio feedback could be disconnected or have a reduced number of free
channels due to the play back of a MIDI sequence. The context of the platform, and
therefore the widgets, could vary due to differences in the environment over time, for
example the sun could gradually cause more and more glare on a monitor as the day
progresses or a shared lab may have different ambient noise levels as the number of
people in the room changes. The context may also vary as, for example, the location
of a mobile device changes..

By using multiple mechanisms, the widgets can be more flexible in the way they
can adapt themselves. The different characteristics of the different mechanisms, on
both input and output, allow the demands made by the current context to be best met.
Equally, with all the options available, it is important that users are able to tailor the
widgets to their personal requirements. These requirements may be a high level
preference, for example a preference for a particular colour, or may be based upon a
need, for example if visual feed back is of no use to a visually impaired user.

Related Work

The Seeheim model [2] was one of the first user interface models to separate the
user interface architecture into monolithic functional blocks. Three functional blocks
were defined: the presentation system which handled user input and feedback; the
application interface model which defined the application from a user interface’s
point of view and the dialogue control system which defined the communication
between the presentation system and the application interface model. Like Seeheim,
the toolkit architecture presented in this paper has a monolithic presentation
component (albeit with separate blocks for input and output), although the dialogue
control system is distributed through out the widgets. The toolkit architecture does not
deal with application models because it is solely concerned with the input to the
widgets and the output generated by the widgets.

MVC (Model View Controller) and PAC (Presentation, Abstraction, Control) [3]
are both agent based models, where an agent is defined to have “state, possess an
expertise, and is capable of initiating and reacting to events.” [4]. An interface is built
using hierarchies of agents. These agents represent an object in the application. In
MVC, the model describes the semantics of the object, the view provides the
(normally visual) representation of the object and the controller handles user input. In
PAC, the abstraction describes the functional semantics of the object, the presentation
handles the users interaction with the object, both input and output and the control
handles communication between the presentation and the abstraction as well as
between different PAC agents. The toolkit is object-oriented like both MVC and
PAC, with each widget (or agent) encapsulated into different objects. Our toolkit,
however, does not define the whole user interface in terms of a hierarchy of agents,
but rather defines the individual widgets without specifying their organisation. Like
the MVC model the toolkit separates input and output, although unlike MVC, the
toolkit’s widgets do not have a controller type object because it is concerned purely
with input to and output from individual widgets. It would be possible, however, to
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build an MVC type architecture around the toolkit. Like PAC, the toolkit abstracts the
widgets, but unlike PAC, the toolkit’s abstraction is only aware of the widget’s state
but is not aware of the underlying application semantics. This is because the toolkit is
designed as an extension of the Java Swing toolkit [5] allowing it to be easily
incorporated into existing Java applications.

Previous solutions to the challenge of a toolkit suitable for multiple platforms have
included virtual toolkits. These toolkits layer the user interface architecture, extracting
the generic components into portable layers which sit on top of platform dependent
layers. The SUIT system [6] was designed to run on three platforms, Mac, UNIX and
Windows. The user interface was split into two layers on top of the platform
dependent toolkits. The toolkit layer provided the tools necessary to implement the
interface. The graphics layer provided a well defined graphical layer which could be
easily ported between platforms. The XVT system [7] added a single, platform
independent  layer to the toolkits of the two platforms (Mac and Windows) supported.
This layer mapped XVT commands into appropriate commands for the platform.
These solutions provide a means to produce user interfaces for multiple platforms.
Our toolkit relies on the portability of Java to ensure the interface can run on different
platforms, but extends the notion of portability to include the resources available to
the platform and the context the platform is running in

The Garnet system [8] is a set of tools which allow the creation of highly
interactive graphical user interfaces, providing high level tools to generate interfaces
using programming by demonstration and a constraints system to maintain
consistency. The Garnet toolkit allows the graphical presentation of its widgets to be
easily modified by changing the prototype upon which the widget is based. Doing this
will update all dependent widgets. This is analogous to changing the design of output
for a widget in an output module of our toolkit.

The HOMER system [9] allows the development of user interfaces that are
accessible to both sighted and non-sighted users concurrently. By employing abstract
objects to specify the user interface design independently of any concrete presentation
objects, the system was capable of generating two user interfaces which could run
concurrently for the same application. This allowed sighted and non-sighted users to
co-operate using the same application. Unlike our toolkit, the HOMER system
developed two interfaces, using two separate output mechanisms rather than have one
interface which can switch between multiple mechanisms as and when required, using
several concurrently if appropriate.

Alty et al. [10] created a multimedia process control system that would choose the
appropriate modality to present information to a user. This would allow more
information to be presented by increasing the bandwidth the interface could use.
Additionally, if the preferred modality is unavailable if, for example, it is already
being used for output, the system would  attempt to present the information using an
alternative. It was found, however, to be almost impossible to specify how these
switches should be made due to their general nature. To limit the complexity of the
system, a user-interface designer would supply it with valid options for output
modalities. Our toolkit avoids this problem by avoiding generic solutions, but
handling specific situations individually.

The ENO system [11] is an audio server which allows applications to incorporate
audio cues. ENO manages a shared resource, audio hardware, handling requests from
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applications for audio feedback. This shared resource is modelled as a sound space,
with requests for sounds made in terms of high level descriptions of the sound. Like
ENO, our toolkit manages shared resources, although the toolkit extends the concept
by switching between resources according to their suitability and availability.
Similarly, the X Windows system [12] manages a shared resource, this time a
graphics server. Again, our toolkit extends this concept by managing resources in
multiple output mechanisms and switching between them.

Plasticity [13] is the ability of a user interface to be re-used on multiple platforms
that have different capabilities. This would minimise the development time of
interfaces for different platforms. For example, an interface could be specified once
and then produced for both a workstation with a large screen and a mobile device with
limited screen space. This is achieved by specifying the interface using an abstract
model, and subsequently building the interface for each platform using that platform’s
available interactors and resources. Like the toolkit, plasticity allows user interfaces to
adapt to available resources, although the mechanisms used are different. Plasticity
allows an interface to be specified once and subsequently generated for multiple
platforms. The interfaces for each platform may use different widgets to suit the
resources available. For example, a chart may be used on a workstation monitor, but a
label may be used on a PDA display. The toolkit, however, adapts the input and
output of an existing widget to handle differing resources. For example, a widget may
be reduced in size according to the available screen space. Additionally, the toolkit
attempts to adapt the interface across multiple output mechanisms whereas plasticity
is only aimed at visual feedback.

Toolkit Architecture

Here, we describe the architecture of the toolkit which allows the widgets to be
resource and context sensitive. To enable this, the behaviour of the widgets is
separated from the input and output mechanisms used. This allows the widgets to
switch between mechanisms without affecting their behaviour. Similarly, the widget’s
presentation options are controlled by a separate module to allow the easy tailorability
of the widgets. Initially, we describe how input to the widgets is handled. The second
section describes how the widget are presented and finally, we compare input and
output, highlighting any symmetries or differences, and describing how the two are
combined in a consistent fashion.

Input Architecture

To be flexible the widgets need to be able to handle multiple input mechanisms, with
the potential for new input mechanisms, such as speech or gesture, to be added
dynamically. Fig. 1 shows the architecture employed to enable this.
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Fig. 1. Input Architecture

The abstract widget behaviour describes the generic behaviour of the widget. For
example, a button would have the generic behaviour described by the state transition
diagram shown in Fig. 2.

Unselected

Selected

Unselectable

Abstract Widget
States

Transient State

Labels

State
Transitions

Fig. 2. Abstract behaviour of a button.

This behaviour is expanded upon by the input mechanism behaviour(s) for the
widget. These behaviours conform to the abstract behaviour for the widget, but may
include sub-states which more accurately specify the behaviour of the widget for a
given input mechanism. For example, Fig. 3 shows a simplified state transition
diagram describing the behaviour of a button when using a mouse as the input
mechanism.
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Fig. 3. Button behaviour for the mouse input mechanism (simplified).

The input mechanism behaviour(s) of a widget receive events from the relevant
input mechanism(s). These events are then filtered appropriately according to the
current state of the widget. If a relevant event is received, it is passed to the abstract
widget state. If an event received by an input mechanism behaviour causes a change
in the abstract state of the widget, the abstract widget state ensures that all input
mechanism behaviours are notified so that the states of all the input mechanism
behaviours are consistent.

For example, a button is in the unselected state, and it employs two input
mechanisms, a mouse and speech input. If a user moves the mouse over the button,
the appropriate event is received by the mouse input mechanism and is passed to the
abstract widget behaviour. This event, however, does not affect the abstract state of
the widget, so there are no concerns over the consistency of the states of the input
mechanism behaviours. If the user was then to select the button using a speech
command, this event would be received by the speech input mechanism behaviour
and passed to the abstract widget behaviour. This event would change the state of the
abstract widget to “selected”, so the state of the mouse input mechanism behaviour
would have to be changed to selected to remain consistent. As selected is a transient
state, the abstract widget behaviour would automatically have to update the states of
all input mechanisms to the unselected state. This differs from the notion of data
fusion in the MATIS system [14] where pieces of data, from separate input
mechanisms are fused into one command, for example a request for a plane ticket
where the destination and departue locations are given in two different modalities. In
the toolkit, the analogous situation is that the user moves the mouse over the graphical
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widget used to select one piece of data, but then actually selects the destination using
speech input. Although two input mechanisms were used by the user, only one was
used to make the selection. The use of the mouse in this case was redundant. If the
user were to proceed with the selection using the mouse and selected the departure
location using speech input, the toolkit would handle the two selections separately,
and a mechanism such as data fusion would be required at the application level to
determine the meaning of the pieces of data selected.

By separating the abstract behaviour of the widget from the input mechanism
behaviour(s), the widget is insulated from any changes in input mechanisms. Indeed,
the differences in input mechanisms are irrelevant to the abstract widget, and as such
it is possible to replace one input mechanism with another, or even add a new input
mechanism, providing multiple input mechanisms without affecting the widget in any
other way. Which input mechanism(s) a widget uses is controlled by the user using a
control panel (Fig. 4). This allows the user to add or remove input mechanisms
to/from a widget.

Output Architecture

As with the input architecture, widget behaviour has been separated from the
widget presentation, to allow the widgets to be flexible. Fig. 4 shows the output
architecture.

The abstract behaviour of the widget requests feedback appropriate to its current
state. This request is passed to the feedback manager which splits this request into
multiple requests, one for each mechanism being used. Each new request is given
three “weights”, reflecting user preference for this mechanism, resource availability
for this mechanism and the suitability of this mechanism in the current context. These
mechanism-specific requests are passed to the appropriate mechanism mappers,
where any user preferences are added to the request. These preferences may indicate,
for example, a 3D effect graphical output style or a jazz audio output style.

These amended requests are passed on to the rendering manger. This monolithic
component ensures that the feedback requested by different widgets will not conflict.
Because it is monolithic, the rendering manager is able to oversee the requests made
by all the widgets and consequently is able to highlight any possible conflicts. If the
output mechanism is able to handle such clashes, then the requests are passed on,
otherwise the rendering manager will change the request to a different, more suitable
mechanism. As with the input mechanisms, the output modules are monolithic
components. Consequently, it is possible to replace an output mechanism with a new
one, or to add a new output mechanism without affecting the existing output modules.
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Fig. 4. Output Architecture

The widget’s output can be modified in three ways.  Users can specify a weight
describing the importance they associate with a particular output mechanism for a
widget. This could be set due to preference, the user prefers the audio feedback to be
a little less intrusive, or user need, visual feedback is of no relevance to a visually
impaired user. Output mechanisms can specify the resource availability weight. This
could be affected by, for example, the screen size, or number of MIDI channels
available. The suitability of a particular resource can be specified by external modules
which can be added to the toolkit. These could, for example, measure the ambient
volume, the brightness of the surroundings or the motion of a mobile device and
adjust the feedback accordingly.

The control panel allows users to personalise the widgets output using parameters
supplied by the output mechanisms. Users are also allowed to set a weight for their
preference for each of the different output mechanisms here. The control panel also
has an API allowing software control over these functions. The resource manager
controls the values for the weights for the different output mechanisms. The user
preference weight is received from the control panel. The resource availability weight
is received from the respective output mechanisms, and the resource suitability weight
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is received from software components via the resource manager API. It is thus
possible to build software modules to extend the toolkit which can detect the
suitability of a particular output mechanism and inform the toolkit when appropriate.

A Comparison of the Input and Output Architectures

Although the input and output architectures are largely symmetrical there is one
difference due to the fundamental asymmetry of input and output, namely the output
architecture has a monolithic control structure, the rendering manager, whilst there is
no analogous structure in the input architecture. Whilst it would be possible to include
an input analogue in the architecture, it is difficult to see what purpose it would serve.
The rendering manager is necessary on output because the output for different
widgets could potentially clash. The rendering manager avoids this problem by
tracking the feedback generated system wide. An input analogue is unnecessary
because such clashes on input cannot occur given the way input is currently handled.

Ensuring Input and Output Are Consistent

Because both the input and output behaviours are not encapsulated within the widget,
there is a danger that the input and output behaviours might not be consistent. For
example, a widget’s graphical representation could change size, but because the
output behaviour is separate from the input behaviour, the area deemed to be valid for
input to the widget may not be changed. To avoid this scenario it is necessary for
there to be some communication between input and output mechanisms. This
communication, however, needs to be controlled as there is little point in, for
example, an audio output mechanism communicating changes in its presentation to a
screen-based mouse input mechanism.

To ensure that the appropriate input and output mechanisms communicate, each
mechanism is associated with an interaction area. These areas define the space in
which a user can interact with the widget. For example, a mouse input mechanism and
a graphical output mechanism would share the same 2½D interaction area. Each
mechanism that uses a particular interaction area will share common characteristics.
For example, mechanisms that use the 2½D interaction area described above will
share the same co-ordinate system. The communication between input and output
mechanisms is brokered by a communication object in each widget. This object
controls the communication between all the input and output mechanisms ensuring
that they are all consistent in their behaviour. The communication object would
receive messages from all output mechanisms, and pass these messages on to input
mechanisms that share the output mechanism’s interaction space.

There is a potential danger that some input mechanisms may require analogous
output mechanisms or vice-versa. For example, a gesture input mechanism where you
point to the location of a spatialised sound source to select the widget requires a
suitable output mechanism. Equally, some mechanisms may not be suitable for a a
particular widget. For example, many current haptic devices which require the user to
actively grasp the device would not  be suitable for feedback indicating the state of a
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background task as it progresses. In this case, a haptic output mechanism would not
be suitable. The solution provided by the toolkit is to supply it with default output
mechanisms which are not platform dependent and are suitable for all widgets. A
more generic solution would be to include constraints that mean all widgets must be
able to be presented by at least one output mechanism, regardless of suitability or user
preference.

Implementation

Java has been used to implement the toolkit. It was chosen due to its portability,
adding to the flexible nature of the toolkit. The toolkit architecture has been fully
implemented for the output, with three widgets (buttons, menus and progress bars)
added to the toolkit so far. Output was implemented initially because we could take
advantage of Java’s built in event handling mechanisms. Although this isn’t a suitable
solution for the long term because it limits the use of different input mechanisms, in
the short term it allows us to evaluate the effectiveness of the toolkit for output
without the overhead of implementing the input architecture.

Rather than accepting events from independent input mechanism behaviour(s), the
abstract widget encapsulates the input behaviour for the widgets using the Java AWT
mechanism. The widget behaviours are specified using a state transition diagram
which is hard coded into the abstract widget. Each node in the diagram listens for
appropriate events, generating requests for feedback when the node is activated.
When an appropriate event is received, the node is deactivated and the appropriate
new node is activated. The requests for feedback are then passed to the widget’s
feedback manager where the request is split into multiple requests that are eventually
received by the output mechanisms. Currently two output mechanisms are used, a
graphical one based upon the standard Java Swing widgets and an audio one using
earcons [15, 16]. Swing widgets are used as the basis for the graphical output because
this allows us to use the AWT input mechanism, but it does have the disadvantage of
not allowing as much flexibility in the way the widgets are presented. Additionally,
this means that some of the output mechanism is encapsulated within the abstract
widget along with the input mechanism.

The graphical presentation for the buttons and menus are generated in a similar
way, by changing the size and colour of the widget appropriately. The progress bar,
however, does not rely upon the AWT event system to receive events. The events are
passed to it by the parent application. This allowed us to handle the graphical
presentation of the progress bar in a manner more consistent with the design of the
architecture, and to be more flexible in the way the widget is presented. The output
module paints the progress bar from scratch in accordance with the request received,
meaning the presentation can be changed in more interesting ways. Fig. 5 (a-c) show
the same progress bar with different weights associated to the amount of resource
available for graphical presentation.
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Fig. 5.  Progress Bar Representations With Different Graphical Weights

The audio presentation for all the widgets is based upon previous work done on
evaluating audio feedback in graphical user interfaces [17-19]. The audio presentation
for all the widgets is flexible because it does not rely upon the Swing graphical
output. Because of this it was possible to develop two different audio modules, which
can be changed dynamically during use. The output modules are stored in Java jar
files which are loaded as required. Should a developer wish to build a new output
module, all he/she need do is build a java object which conforms to the API for an
output module and load it into the toolkit.

An interesting issue that arose as a consequence of using Swing widgets and
therefore the AWT event mechanism was that it became apparent that assumptions
had been made by the designers of Swing regarding the importance different events to
software engineers using their widgets. For example, if a user presses the mouse
button outside a JButton, the JButton is in a different state than if mouse button
remains unpressed. Similarly, mouse releases outside a JButton are of relevance to the
JButton. These events, however are not deemed to be of relevance to software
engineers using these buttons and consequently are not readily available. The solution
used in the toolkit is to resolve this problem is to have a global listener for mouse
presses and release which listens for such events occurring on all components and
passes them on to all interested widgets.

To further enhance the flexibility of the toolkit, an external module has been
developed which measures the ambient audio volume of the environment around the
device running an application built using the toolkit and adjusts the weighting for the
suitability of the audio feedback, for example reducing the volume of sounds played if
the environment is quiet (and vice versa).
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Worked Example

An audio/visual button is in its default state. The
button is drawn as shown, with the cursor outside
the area of the button. No sounds are played. BUTTON

The mouse enters the button. This generates a
Java AWT MouseEnter event which is passed to the
abstract widget behaviour by the mouse input
mechanism. The event is translated into a request
for the appropriate, MouseOver, feedback.

BUTTON

Widget
Behaviour

Mouse Enter

The request is passed to the feedback controller.
This widget has a weight of 30 for audio feedback,
50 for visual feedback and 0 for haptic feedback.
Two requests are generated with appropriate
weights, one for audio feedback and one for visual
feedback. No request is generated for haptic
feedback. Each request is passed onto the
appropriate modality mapper.

Feedback
Controller

Mouse Over

Modality
Mapper
(Visual)

Modality
Mapper
(audio)

Each modality mapper modifies the event in
accordance with user preferences set in the control
panel. In this case, the style Rectangular is applied
to the graphical request and Jazz is applied to the
audio request. Each request is passed onto the
rendering manager.

Mouse Over
Jazz

Mouse Over
Rectangular
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The rendering manager checks for potential
clashes with these requests. In this case there are no
clashes so the requests are passed onto the
appropriate output modules.

Mouse Over
Jazz

Mouse Over
Rectangular

Rendering
Manager

Each output module receives the request and
translates the request into concrete output. The
visual module draws a rectangular button to match
the user preference and shaded to indicate mouse
over and the audio module plays a persistent tone at
a low volume to indicate mouse over in a Jazz style
to match the user preference. BUTTON

Visual
Module

Audio
Module

Discussion and Future Work

This paper describes a user interface architecture that we have implemented which
allows widgets to be flexible in several ways, using multiple input and output
mechanisms, with the ability to add or remove mechanisms dynamically. The widgets
can adapt their presentation according to the resources available for presentation, the
suitability of different mechanisms given the current context and in accordance with
user preference. This is achieved by separating the input and output mechanisms from
the behaviour of the widget, allowing the widget to be used regardless of the
mechanism. With the increased use of mobile devices, being flexible in this way
allows the toolkit’s widgets to be suitable for multiple platforms in multiple contexts
without requiring any changes to be made.

Because the input and output mechanisms are no longer encapsulated in the
widget, but are separate objects outside the widget, there needs to be some
communication between them to ensure that the input and output mechanisms remain
in a consistent state. However, there is also a need to limit this communication so that
it only occurs between appropriate input and output mechanisms. To ensure this is the
case, each mechanism is defined to operate within an interaction area. Only
mechanisms sharing an interaction area will need to communicate. The
implementation, shows that the architecture is effective, with widgets being able to
modify their feedback according to resource and context requirements.
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