
A Probabilistic Model Checking Approach to Analysing Reliability, Availability, and
Maintainability of a Single Satellite System

Zhaoguang Peng1,2, Yu Lu2,∗, Alice Miller2, Chris Johnson2 and Tingdi Zhao1

1 School of Reliability and Systems Engineering, Beijing University of Aeronautics and Astronautics, Beijing, China
2 School of Computing Science, University of Glasgow, Glasgow, United Kingdom

Abstract—Satellites now form a core component for space
based systems such as GPS and GLONAS which provide
location and timing information for a variety of uses. Such
satellites are designed to operate in-orbit and have lifetimes of
10 years or more. Reliability, availability and maintainability
(RAM) analysis of these systems has been indispensable in
the design phase of satellites in order to achieve minimum
failures or to increase mean time between failures (MTBF)
and thus to plan maintainability strategies, optimise reliability
and maximise availability. In this paper, we present formal
modelling of a single satellite and logical specification of
its reliability, availability and maintainability properties. The
probabilistic model checker PRISM has been used to perform
automated quantitative analyses of these properties.

Keywords-satellite systems; reliability, availability and main-
tainability (RAM) analysis; probabilistic model checking; con-
tinuous time Markov chains (CTMCs)

I. INTRODUCTION

With the emergence of efficient, high-performance, and

low cost satellites, earth orbiting satellites are often deployed

in satellite constellations and space systems to ensure re-

liable and dependable missions. These kinds of satellites

have played an essential part in both civil and military

contexts, and support a wide range of applications rang-

ing from satellite navigation to space stations. Reliability,

availability and maintainability (RAM) analysis has been

indispensable in the design phase of satellites in order to

achieve minimum failures or to increase mean time between

failures (MTBF) and thus to plan maintainability strategies,

optimise reliability and maximise availability. The question

of how to select optimal configurations and maintenance

plans and underlying resources, to satisfy requirements and

improve efficiency is a key research question.

This concern calls for effective solutions to the challenges

of verifying large and complex satellite systems. Formal

verification is a well-established technique in Computer

Science for either detecting errors, or for providing increased

confidence in the reliability of a system. Until now, attempts

to verifying satellite systems has been piecemeal. Verifica-

tion largely depends on more brute force approaches, such as

simulation and testing. Generally, simulation is the common

∗Corresponding author. (�) School of Computing Science, University
of Glasgow, 17 Lilybank Gardens, Glasgow G12 8RZ, United Kingdom.
(�) y.lu.3@research.gla.ac.uk.

validation approach used for verification of such systems and

protocols applied in them. However, simulation has been

unable to keep apace with the growth in satellite design

complexity. It is therefore timely to apply formal verification

techniques to this domain.

Model checking is a formal verification technique that

involves defining a model of a system from a formal speci-

fication. The model is then used to check desired properties

of the system. This involves exploring the underlying state

space of the model, and specifying properties via some

formal logic such as temporal logic. In this context, the

effects of proposed changes to an in-orbit system can be first

checked via a model, rather than via expensive prototypes.

The required reliability, availability, and maintainability

properties of satellite systems can be expressed in temporal

logic, and so lend themselves very well to proof via model

checking.

The goal of the paper is to adopt probabilistic model

checking to cope with the verification demand introduced by

satellite systems. Probabilistic model checking is a formal

method for specifying quantitative properties of a system

model. Models obtained by this technique are normally ex-

tensions or variants of Markov chains or automata, extended

with costs and rewards that estimate resources and their

usage during operation. Properties to be verified or analysed

are specified in temporal logic with auxiliary operators

such as probability and reward. We present an automated

quantitative analysis of singe satellite availability with the

probabilistic model checker PRISM [1].

Our paper is organised as follows. In Section II we give

technical background on probabilistic model checking, while

in Section III we present our formal specification of a single

satellite and its associated continuous-time Markov chain

(CTMC) model. Then, we perform RAM analysis using

PRISM in Section IV. In Section V we report related work.

Finally, in Section VI we conclude and outline directions for

future research.

II. PROBABILISTIC MODEL CHECKING

In this section we introduce some formal notations that

are relevant to probabilistic model checking. Note that our

definitions are from [2], from which further details can be

found.

2013 European Modelling Symposium

978-1-4799-2578-0/13 $31.00 © 2013 IEEE

DOI

573

2013 European Modelling Symposium

978-1-4799-2578-0/13 $31.00 © 2013 IEEE

DOI 10.1109/EMS.2013.102

573

2013 European Modelling Symposium

978-1-4799-2578-0/13 $31.00 © 2013 IEEE

DOI 10.1109/EMS.2013.102

611

 Repair on orbit

Send
software

commands

Move and
replace the
failed one

Check
redundant
satellite on

obit

Scheduled
interruption

Unscheduled
interruption

Failure

Launch the
satellite

Succeed

Fail

Unavailable

Available

Succeed

Fail

Succeed

Interrupt

Finish

Disappear

Interrupt

Fail

Check
spare

satellite on
ground

Unavailable

Available

Build a
new one

Fail

Normal

Figure 1. A failure model and maintainability plan of a single satellite

A. Continuous-time Markov Chains

Let AP be a fixed, finite set of atomic propositions.

Formally, a continuous-time Markov chain (CTMC) C is a

tuple (S,sinit,R,L) where:

• S = {s1, s2, ..., sn} is a finite set of states.

• sinit ∈ S is the initial state.

• R : S × S → R≥0 is the transition rate matrix.

• L : S → 2AP is a labelling function which assigns to

each state si ∈ S the set L(si) of atomic propositions

a ∈ AP that are valid in si.

Intuitively, R(si, sj) > 0 if and only if there is a transition

from state si to state sj . Furthermore, R(si, sj) specifies

that the probability of moving from si to sj within t time

units is 1−e−R(si,sj)·t, an exponential distribution with rate

R(si, sj). If R(si, sj) > 0 for more than one state sj , a

competition between the transitions originating in si exists,

known as the race condition.

B. Continuous Stochastic Logic

Let C = (S, sinit, R, L) be a continuous time Markov

chain. In this section, we introduce Continuous Stochastic

Logic (CSL) [3], [4]. CSL is inspired by the logic Compu-

tation Tree Logic (CTL) [5], and its extensions to discrete

time stochastic systems (PCTL) [6], and continuous time

non-stochastic systems (TCTL) [7]. There are two types of

formulae in CSL: state formulae, which are true or false in

a specific state, and path formulae, which are true or false

along a specific path.

Let a ∈ AP be an atomic proposition, p ∈ [0, 1] be a

real number, �� ∈ {≤, <,>,≥} be a comparison operator,

and I ⊆ R≥0 be a non-empty interval. The syntax of CSL

formulas over the set of atomic propositions AP is defined

inductively as follows:

• true is a state-formula.

• Each a ∈ AP is a state formula.

• If Φ and Ψ are state formulas, then so are ¬Φ and

Φ ∧Ψ.

• If Φ is state formula, then so is S��p(Φ).
• If ϕ is a path formula, then P��p(ϕ).
• If Φ and Ψ are state formulas, then XIΦ and UIΨ are

path formulas.

S��p(Φ) asserts that the steady-state probability for a Φ
state meets the boundary condition �� p. P��p(ϕ) asserts that

the probability measure of the paths satisfying ϕ meets the

bound given by �� p. The path formula XIΦ asserts that a

transition is made to a Φ state at some time point t ∈ I .

Operator UI is the timed variant of the until operator of

CTL; the path formula ΦUIΨ asserts that Ψ is satisfied at

some time instant in the interval I and that at all preceding

time instants Φ holds.

III. FORMAL MODELLING WITH A CTMC

PRISM [1] is a probabilistic model checker. It sup-

ports the analysis of several types of probabilistic mod-

els: discrete-time Markov chains (DTMCs), continuous-

time Markov chains (CTMCs), Markov decision processes

(MDPs), probabilistic automata (PAs), and also probabilistic

timed automata (PTAs), with optional extensions of costs

and rewards. PRISM allows us to verify properties specified

in the temporal logics PCTL for DTMCs and MDPs and

CSL for CTMCs. Models are described using the PRISM

language, a simple, state-based language. The abstract model

574574612

of a single satellite is illustrated in Figure 1, parameters are

omitted. We take a CTMC as our underlying PRISM model

for our abstract model. The detailed PRISM model of the

satellite system, the property specification and the analysis

results are available in [8].

We specify our actual CTMC model with states, a tran-

sition rate matrix, and a labelling function. Initially, the

satellite runs in the normal state. After a period of execution

it could be interrupted by an scheduled or unscheduled

interruption during its lifecycle. Scheduled interruptions are

normally caused by certain types of Operations and Main-

tenance (O&M) for routine satellite. This can cause satellite

signal unavailability due to the station keeps manoeuvres,

atomic clock maintenance, software updates, and hardware

maintenance. Unscheduled interruptions can be caused by

solar radiation, the earth’s magnetic field cosmic rays, which

result in a satellite Single Event Upset (SEU). However, both

scheduled and unscheduled interruptions are usually tempo-

rary, lasting just several hours. An unscheduled interruption

usually disappears automatically. The satellite can fail any

time during its lifetime due to End-of-Life (EOL) outage or

other vital failures.

When the satellite fails, staff on the ground must decide

upon the best approach to repair it. It may be possible that

failures can be resolved on orbit by giving specific software

commands to the satellite. Otherwise it might be necessary

to move a redundant satellite into position to replace the

failed satellite. If no redundant satellite is available then a

new satellite must be manufactured and launched. In the

worst case, the new satellite does not launch successfully,

due to a known probability of satellite launch failure.

In our paper, parameter values correspond to those latest

U.S. GPS system, GPS Block III satellites. The GPS III

series is the newest block of GPS satellites (SVN-74 and

up). GPS III provides more powerful signals than previous

versions in addition to enhanced signal reliability, accuracy,

and integrity. The key improvement is the 15-year design

lifespan [9]. Since not all of the actual data for the GPS III is

available, in this paper we instead use some parameter values

associated with similar satellite systems. All parameters used

in our CTMC model and properties are specified in Table I.

Table I
PARAMETERS FOR THE CTMC MODEL AND ANALYSES

R MTBF MTTR tα pβ tγ tδ tε pη tκ

0.80 15y 24h 4320h 80% 24h 1440h 4320h 90% 24h

We use p to express probability and t for time, and the

reliability of the satellite is R. If the satellite fails, we say

that it moves from a “normal” state to a “failure” state. Both

the mean time to unscheduled interruption and the mean

time to the scheduled interruption are tα. When the satellite

fails, the probability of the failure being resolved in-orbit by

moving a redundant satellite to replace the failed one is pβ .

If on orbit repair is not possible, a new satellite is needed.

The times taken to decide to build a new satellite and for

one to be manufactured are tγ and tδ respectively. If a new

satellite is to be manufactured, the probability of successful

launch is pη . After successful launch, the time taken for the

satellite to move to the right position and a normal signal

sent from it to be received on ground is tκ.

IV. QUANTITATIVE ANALYSIS IN THE PRISM

We have identified the need to analyse reliability, avail-

ability, and maintainability properties of satellite based ap-

plications. We illustrate the use of probabilistic model check-

ing in this domain by describing our PRISM model. The

reliability for a satellite consists of scheduled interruptions,

unscheduled interruptions, and failure states in the system.

The probability of successful launch is the reliability for

the satellite. “Repaired in-orbit”is the maintainability for

the satellite. Reliability and maintainability are availability

properties of a satellite. Reliability must be sufficient to sup-

port the mission capability needed in its expected operating

environment.

If reliability and maintainability are not adequately de-

signed into satellite and space based systems, there is risk

that design will breach desired availability or performance

requirements. System performance baseline thresholds with

significantly higher design or development costs due to

resulting corrective action costs; will cost more than antici-

pated to use and operate; or will fail to provide availability

expected by the researchers or users.

Satellite will deteriorate with time due to failure mech-

anisms. We assume that time delay is a random variable

selected from an exponential distribution, which is an as-

sumption used in PRISM. According to the system reliability

theory [10], the reliability of a satellite from R(t) can be

defined as

R(t) = Pr{T > t} = e−λt, (1)

and, then we can obtain

λ(t) =
−lnR(t)
E(si)

. (2)

Satellite failures typically occur at some constant failure

rate λ, failure probability depends on the rate λ and the

exposure time t. Typically failure rates are carefully derived

from substantiated historical data such as mean time between

failure (MTBF). We have

λ =
−lnR
T

=⇒ λ =
−lnR
MTBF

, (3)

where t = T = MTBF , where MTBF is the design

parameter or the statistics parameter. Referring to the lat-

est characteristics of satellites used for Global Positioning

575575613

(a) Reliability property 2 (b) Reliability property 4

Figure 2. Analysis results of reliability properties.

Systems (GPSs), we assume the MTBF of the satellite to

be 15 years. As a result, R = 0.80 and MTBF = 15 years.
Further, the mean time to repair (MTTR) is 24 hours.

PRISM provides support for automated analysis of a wide

range of quantitative properties of these models, such as

“what is the probability of a failure causing the satellite to

stop working within 12 hours?”, “what is the worst-case

probability of the satellite on-board system terminating due

to an error, over all possible initial configurations?”, or “what

is the worst-case expected time taken for the satellite signal

to be received?”.

A. Reliability Properties and Analysis

Reliability properties that we can analyse using PRISM

include:

1) the probability that a satellite will need to be replaced by a
new one in 15 years at the reliability 0.80:
P=?[F <= T s = 5]; T = 129600;

2) the probability that a satellite will need to be replaced by a
new one due to complete failure in 15 years at the reliability
0.80 over the time:
P=?[F <= Ts = 5];R = 0.80;T = 0 : 129600 : 8640;

3) how many times a satellite will need to be replaced by a
new one in 15 years at the reliability 0.80:
R=?[C <= T]; T = 129600; R = 0.80;

4) how many times a satellite will need to be replaced by a
new one over different reliabilities, in 15 years:
R=?[C <= T]; T = 129600; r = 0.01 : 0.99 : 0.05.

As is shown in Figure 2(a), the probability that the satellite

has a failure and is unable to be repaired during 15 years is

7.71%. From the analysis result in Figure 2(b), the number

of times the satellite will have a failure and be unable to be

repaired in 15 years is 0.08, under the precondition that the

reliability is 0.80. If the reliability is set to 0.5, the number

of vital failures will be smaller than 0.25 during 15 years.

Using the property to calculate the number of unscheduled

interruptions, the number of times will be 29.95 in 15 years.

B. Maintainability Properties and Analysis

Maintainability properties that we can analyse using

PRISM include:

1) the number of times that satellites need to be repaired on
the orbit in 15 years:
R=?[C <= T]; T = 129600; R = 0.80;

2) the satellite maintenance times when the reliability from the
0.01 to 0.99 in 15 years:
R=?[C <= T]; T = 129600; R = 0.01 : 0.99 : 0.01;

3) the satellite maintenance times when the MTBF from the
1st year to 15th years:
R=?[C <= T]; T = 129600; R = 0.01 : 0.99 :
0.01;MTBF = 1 : 129600 : 8640;

4) the number of cases that a satellite needs to be repaired on
orbit, but not eventually succeed in 15 years:
R=?[C <= T]; T = 129600; r = 0.80.

The number of times the satellite needs to be repaired

on orbit in 15 years is 0.18. The number of times the

satellite needs to be repaired on orbit over time is shown in

Figure 3(a). When the reliability of the satellite is increased

to 0.5, the number of times the satellite needs to be repaired

will decrease to 0.5. Figure 3(b) illustrates that the number

of times to repair the satellite is below 1 when the MTBF
is 2 years.

C. Availability Properties and Analysis

Availability properties that we can analyse using PRISM

includes:
1) the availability of the satellite in 15 years, when the

reliability is 0.80:
(R=?[C <= T])/T ; T = 129600; R = 0.80, and
R=?[C <= T]; T = 129600; R = 0.01 : 0.99 : 0.01;

2) the unavailability of a satellite over the satellite operation
time:
(T − R=?[C <= T])/T ; T = 0 : 129600 : 8640; R =
0.80;

3) the relationship between satellite availability and its main-
tenance time taken for scheduled interruption:
(R=?[C <= T])/T ; T = 129600; R = 0.80, f = 1 :
48 : 3.

The availability of the satellite is 99.83% in 15 years when

the reliability is 0.80. As is shown in Figure 4(a), if the

reliability increases to 0.4, the availability of the satellite

reaches 0.995. So if the required probability of the available

satellite is 0.995, the reliability must have minimum value

0.4. Figure 4(b) presents the result of availability property

576576614

(a) Maintainability property 2
(b) Maintainability property 3

Figure 3. Analysis results of maintainability properties.

3). It shows that if the required availability is 0.995, the

time taken for scheduled interruption for the satellite will

be smaller than 16 hours.

V. RELATED WORK

There have been a number of notable attempts to use

formal methods to address the problems of design explo-

ration for a satellite system. The theorem prover PVS [11]

was used to verify desired properties in system models of

Ariane 5 where cost of failure is highest. The PICGAL

project [12] has analysed ground-based software for launch

vehicles similar to Ariane 5. In the NASA report [13],

formal methods and their approaches to critical systems are

explained to stakeholders from the aerospace domain. In

[14], the potential role of formal methods in the analysis of

software failures in space missions is discussed. Similarly,

[15] explores how verification techniques, such as static

analysis, model checking, and compositional verification,

can be used to gain trust in model-based systems.

Model checking has been successfully applied to numer-

ous computer systems and their applications, including both

software and hardware systems [16], [17], [18], [19]. Histor-

ically, model checking has been considered to be a powerful

extension of the traditional verification process such as

emulation and simulation. It has also proved to be a suitable

formal technique for exposing errors in satellites, mainly

due to classical concurrency errors. Unforeseen interleavings

between processes many cause undesired events to happen.

In [20], the SPIN model checker [21] was used to formally

analyse a multithreaded plan execution module. This mod-

ule is a component of NASA’s artificial intelligence-based

spacecraft control system which launched in 1998 as part

of the Deep Space 1 mission. Five previously undiscovered

errors were identified in the spacecraft controller, in one case

representing a major design flaw.

The model checking tool Murψ [22] has been used in

[23] to model the Entry, Descent and Landing phase of

the Mars Polar Lander. The model checker was used to

search for sequences of states that led to the violation of

a Murψ invariant. This stated that the thrust of the pulse-

width modulation, which controls the thrust of the descent

engines, should always be above a certain altitude. In [24]

the model checker NuSMV [25] is used to model and

verify the implementation of a mission and safety critical

embedded satellite software control system. The control

system is responsible for maintaining the attitude of the

satellite and for performing fault detection, isolation, and

recovery decisions, at a detailed level.

VI. CONCLUSION AND FUTURE WORK

In this paper, a range of model checkers has been em-

ployed to represent and reason about design and failure

of space based systems. The traditional approaches are not

suitable for analysing system reliability and performance. In

this paper, we consider an automated verification approach -

probabilistic model checking, which extends classical model

checking with quantitative analysis support.

Since parameter settings of our formal models are based

on GPS Block III which is newest generation of GPS

systems, our analysis results can be compared to existing

GPS statistical analysis. In [9], the availability of the GPS

Block III is given as 99.9%. The availability we evaluate

in this paper is close to the actual data. This indicates

that our approach is feasible and efficient. To the best of

our knowledge, we are the first to use probabilistic model

checking to perform RAM analysis of satellite systems.

Actually, numerous failures are distributed differently

other than exponential distributions. In particular, a number

of failures of satellites have a Weibull distribution [10],

which follows the conventional three-component bathtub

curve which models a burn-in and wear-out phase for failure

prediction. For future work, we will look at how to represent

arbitrary distributions in probabilistic models, and to what

extent such kind of distributions are able to be supported by

probabilistic model checking approaches. Further, we plan

to extend our work of analysing a single satellite to satellite

577577615

(a) Availability property 2

� �� �� �� ��
���	

����

����

�

����

��
�����������

�
��
���
��
���
�

(b) Availability property 3

Figure 4. Analysis results of availability properties.

constellation consisting of multiple satellites.

REFERENCES

[1] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Prob-
abilistic symbolic model checker,” in Computer Performance
Evaluation: Modelling Techniques and Tools, ser. LNCS,
T. Field, P. G. Harrison, J. Bradley, and U. Harder, Eds.
Springer, 2002, vol. 2324, pp. 200–204.

[2] C. Baier and J.-P. Katoen, Principles of Model Checking.
MIT Press, 2008.

[3] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Verifying
continuous time markov chains,” in Computer Aided Verifica-
tion, ser. LNCS, R. Alur and T. Henzinger, Eds. Springer,
1996, vol. 1102, pp. 269–276.

[4] C. Baier, J.-P. Katoen, and H. Hermanns, “Approximative
symbolic model checking of continuous-time markov chains,”
in CONCUR’99 Concurrency Theory, ser. LNCS, J. C. Baeten
and S. Mauw, Eds. Springer, 1999, vol. 1664, pp. 146–161.

[5] E. A. Emerson, “Temporal and modal logic,” in Handbook of
Theoretical Computer Science, J. van Leeuwen, Ed. Elsevier,
1990, pp. 996–1072.

[6] H. Hansson and B. Jonsson, “A logic for reasoning about time
and reliability,” Formal Aspects of Computing, vol. 6, no. 5,
pp. 512–535, 1994.

[7] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for
real-time systems,” in Proceedings of the 1990 Fifth Annual
IEEE Symposium on Logic in Computer Science, 1990, pp.
414–425.

[8] http : //dcs.gla.ac.uk/ yu/index files/satellite.zip.
[9] http : //www.gps.gov/systems/gps/space/III .

[10] A. Høyland and M. Rausand, System Reliability Theory:
Models and Statistical Methods. Springer, 2009.

[11] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype
verification system,” in Automated Deduction—CADE-11, ser.
LNCS, D. Kapur, Ed. Springer, 1992, vol. 607, pp. 748–752.

[12] L. Devauchelle, P. G. Larsen, and H. Voss, “PICGAL:
Practical use of formal specification to develop a complex
critical system.pdf,” in FME ’97: Industrial Applications and
Strengthened Foundations of Formal Methods, ser. LNCS,
J. Fitzgerald, C. B. Jones, and P. Lucas, Eds. Springer,
1997, vol. 1313, pp. 221–236.

[13] J. Rushby, “Formal methods and their role in the certification
of critical systems,” in Safety and Reliability of Software
Based Systems, R. Shaw, Ed. Springer, 1997, pp. 1–42.

[14] C. W. Johnson, “The natural history of bugs: Using formal
methods to analyse software related failures in space mis-
sions,” in FM 2005: Formal Methods, ser. LNCS, J. Fitzger-
ald, I. J.Hayes, and A. Tarlecki, Eds. Springer, 2005, vol.
3582, pp. 9–25.

[15] G. Brat, E. Denney, D. Giannakopoulou, J. Frank, and
A. Jonsson, “Verification of autonomous systems for space
applications,” in Proceedings of the 2006 IEEE Aerospace
Conference, 2006, pp. 1–10.

[16] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno,
and D. Notkin, “Model checking large software specifica-
tions,” IEEE Transactions on Software Engineering, vol. 24,
no. 7, pp. 498–520, 1998.

[17] G. Lowe, “Breaking and fixing the needham-schroeder public-
key protocol using fdr,” Software Concepts and Tools, vol. 17,
no. 3, pp. 93–102, 1996.

[18] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E.
Long, K. L. McMillan, and L. A. Ness, “Verification of the
futurebus+ cache coherence protocol,” Formal Methods in
System Design, vol. 6, no. 2, pp. 217–232, March 1995.

[19] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and
D. L. Dill, “Symbolic model checking for sequential circuit
verification,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 13, no. 4, pp. 401–
424, April 1994.

[20] K. Havelund, M. Lowry, and J. Penix, “Formal analysis of
a space-craft controller using spin,” IEEE Transactions on
Software Engineering, vol. 27, no. 8, pp. 749–765, 2001.

[21] G. J. Holzmann, The SPIN model checker. Addison-Wesley,
2004.

[22] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, “Protocol
verification as a hardware design aid,” in Proceedings of the
IEEE 1992 International Conference on Computer Design:
VLSI in Computers and Processors, 1992, pp. 522–525.

[23] Z. Shen, “Model checking for the MPL entry and descent
sequence,” Iowa State University, Tech. Rep., 2001.

[24] X. Gan, J. Dubrovin, and K. Heljanko, “A symbolic model
checking approach to verifying satellite onboard software,”
Science of Computer Programming, 2013.

[25] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pis-
tore, M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV
2: An opensource tool for symbolic model checking,” in
Computer Aided Verification, ser. LNCS, E. Brinksma and
K. G. Larsen, Eds. Springer, 2002, vol. 2404, pp. 359–364.

578578616

