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Abstract. Weibull distributions can be used to accurately model failure
behaviours of a wide range of critical systems such as on-orbit satellite
subsystems. Markov chains have been used extensively to model relia-
bility and performance of engineering systems or applications. However,
the exponentially distributed sojourn time of Continuous-Time Markov
Chains (CTMCs) can sometimes be unrealistic for satellite systems that
exhibit Weibull failures. In this paper, we develop novel semi-Markov
models that characterise failure behaviours, based on Weibull failure
modes inferred from realistic data sources. We approximate and encode
these new models with CTMCs and use the PRISM probabilistic model
checker. The key benefit of this integration is that CTMC-based model
checking tools allow us to automatically and efficiently verify reliability
properties relevant to industrial critical systems.

Keywords: Satellite systems · Weibull distribution · Continuous-time
markov chains · Semi-markov chains · Probabilistic model checking

1 Introduction

Satellite systems are complex due to the fact that they consist of a large number
of interacting subsystems (e.g., gyro/sensor/reaction wheels; control processors
(CPs); and telemetry, tracking, and command (TTC)), which ensure redundancy
without an unnecessary increase in power or mass requirements. Each subsystem
may itself have complex and different failure modes. The failure modes are more
complex than for conventional systems because of the limited opportunities for
repair except through reconfiguration. A satellite subsystem can suffer whole
or partial failures, which may belong to a variety of failure classes. It has been
shown that Weibull distributions are able to properly model on-orbit failure
behaviours of satellite subsystems [1,2].
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Failures in satellite subsystems are conveniently modelled using Weibull dis-
tributions. Unfortunately such distributions are not amenable to continuous time
model checking tools, such PRISM, that mainly support CTMCs with exponen-
tially distributed sojourn time. It has also been shown that it is possible to
approximate many common distributions using phase-type distributions such as
Erlang distributions and a sum of many exponential distributions (the hyper-
exponential distribution), although this has proved computationally difficult [3].
Given the maturity of a CTMC solver such as PRISM, and its focus on minimis-
ing state spaces, this difficulty is less of an issue. The aim is to investigate how
Weibull distributions can be approximated so that PRISM can be effectively
used for model checking based reliability analysis of satellite systems.

Simulation is a commonly used and powerful analysis technique for reliability
engineering. It is flexible since it supports arbitrary normal distributions (such
as Pareto, Weibull, or Lognormal distributions). However, simulations may take
a long time to run as the events (e.g., failure) that we are trying to model may
be very rare. In addition, it involves the complex design of valid simulation
models and interpretations of simulation results. Probabilistic model checking
is a formal method for the specification and verification of complex systems
with stochastic behaviours. It allows the additional inclusion of probabilities on
transitions, and so gives us the ability to check probabilistic properties, such
as, “what is the probability of a failure within 5 years?” The automation of the
PRISM is essential for analysing reasonably large and non-trivial Markov models
with exponential distributions. CTMC models have been used widely to model
reliability and performance of engineering systems or applications. However, the
exponentially distributed sojourn time of CTMCs can be unrealistic to model
satellite systems that exhibit Weibull failures. PRISM is useful for analysing
realistic satellite subsystems, and we can obtain results with high accuracy if
good approximations of Weibull distributions can be made without resulting in
a state space that is too large to yield to feasibly check.

Model checking of semi-Markov chains is more complicated than that of
Markov chains. Techniques for model checking semi-Markov chains have been
developed [4,5], whereas the methods are practically negative or infeasible. In
recent years, applying practical probabilistic model checking tools to analyse
non-Markov models has attracted a lot of attention. In [6], the authors analyse
disk reliability of reasonable sized systems (such as RAID4/5/6) based on non-
exponential distributions in PRISM [7]. Approximations of Weibull models are
considered in [8], using an M-stage Erlang model, and in [9] where 3-state Hid-
den Markov Models (HMMs) are used. In both cases, results are contrasted with
those obtained via simulation. In [10], a stochastic performance model is con-
structed and the hyper Erlang distribution of real-world data used in PRISM to
analyse a public bus transportation network in Edinburgh. In [11], phase-type
distributions are used to analyse a collaborative editing system in PRISM.

Our paper is organised as follows. In Sect. 2, we define semi-Markov models
that specify failures of satellite subsystems based on the Weibull distributions,
while in Sect. 3 we give technical background on CTMCs and PRISM. In Sect. 4,
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we summarise our technique to approximate the Weibull distributions. In Sect. 5,
approximations of these semi-Markov models as CTMCs are developed in PRISM
and their benefits are investigated. Finally, in Sect. 6 we conclude and outline
directions for future research.

2 Multi-state Failure Mode in Satellite Subsystems

We propose an approach to building semi-Markov models for reliability analysis
of satellite subsystems using a real-world database. The main data source consists
of 1584 Earth-orbiting satellites which were launched between January 1990 and
October 2008, and are provided by the SpaceTrak database1. The SpaceTrak
launch and satellite analytical system and its database are used by most global
key launch providers, satellite manufacturers, insurance companies, and satellite
operators. It provides a variety of data and important information about satellite
on-orbit failures and unexpected behaviour, and also launch attempts from 1957.
This has enabled us to predict and analyse failure rates.

One of the problems with stochastic approaches on-orbit is the lack of prior
validation given the specialised nature of many designs. Common core compo-
nents e.g. NOAH and the DoD have a core platform that is then configured but
many components and architectures are unique. The database used here is likely
to provide a conservative base case but is not tailored to specific missions.

The database contains several satellite subsystems. In this paper, we only
consider 11 subsystems (as shown in Fig. 1). These are: (1) Gyro / sensor /
reaction wheel, (2) thruster / fuel, (3) beam / antenna operation / deployment
(4) control processor (CP), (5) mechanisms / structures / thermal, (6) payload
instrument / amplifier / on-board data / computer / transponder, (7) battery
/ cell, (8) electrical distribution, (9) solar array deployment (SAD), (10) solar
array operating (SAO), (11) telemetry, tracking and command (TTC), and one
additional category, which is (12) unknown: when the subsystem causing the
failure of the satellite could not be identified.

Unlike traditional binary models of reliability analysis for which satellite
subsystems are considered to be either fully operational or suffering a com-
plete failure, additional intermediate states which characterise partial failures
are introduced (as shown in Fig. 2). This multi-state modelling approach pro-
vides more insights into the failure behaviours of a satellite system and their
relationship to total failure through a finer level abstraction. These states are
also defined in the SpaceTrak database, and their meanings are summarised as
follows:

– State 1: satellite subsystem is fully operational;
– State 2: minor, temporary, or repairable failure that does not cause a sub-

stantial and perpetual effect on the operation of the satellite subsystem;

1 http://www.seradata.com/.

http://www.seradata.com/
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Fig. 1. An overview of key satellite subsystems

Fig. 2. Multi-state transitions for failure behaviour of satellite subsystems

– State 3: major or non-repairable failure that results in loss of redundancy2 to
the operation of the satellite subsystem on a permanent basis;

– State 4: major or non-repairable failure that influences operation of the satel-
lite subsystems on a permanent basis;

– State 5: drastic failure results in satellite retirement, which implies total fail-
ure of the satellite.

2 Redundancy: the duplication of critical components or functions of a satellite sub-
system.
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3 Preliminaries

3.1 Continuous-Time Markov Chains

Satellite failure events occur with a real valued rate. It is therefore natural for
us to model our systems as continuous time Markov chains (CTMCs). In a
CTMC, time is continuous and state changes can happen at any time. The
formal definition of a CTMC is given in Definition 1. This definition is from [12].

Definition 1. Let AP be a fixed, finite set of atomic propositions. Formally, a
continuous-time Markov chain (CTMC) C is a tuple (S,sinit,R,L) where:

– S = {s1, s2, ..., sn} is a finite set of states.
– sinit ∈ S is the initial state.
– R : S × S → R≥0 is the transition rate matrix.
– L : S → 2AP is a labelling function which assigns to each state si ∈ S the

set L(si) of atomic propositions a ∈ AP that are valid in si.

where R(si, sj) specifies that the probability of moving from si to sj within t
time units is 1 − e−R(si,sj)·t, an exponential distribution with rate R(si, sj). We
approximate the semi-Markov chains in Fig. 3 using the underlying semantics
of CTMCs. A semi-Markov chain is a model in which state holding times are
governed by general distributions, which is a natural extension of CTMCs.

In Fig. 3, not all transitions exist between states for most subsystems as they
are not present in the database. For example, no transition from a minor failure
(state 2) to a total failure (state 5) of thruster/fuel was ever recorded on orbit
for this subsystem in the database. Other transitions also do not occur in the
database, so the total number of transitions is reduced. For this reason, they are
not subject to formal analysis.

3.2 The PRISM Model Checker

We use the model checker PRISM [7] to obtain CTMC approximations of our
multi-state failure models. It supports the analysis of several types of proba-
bilistic models: Discrete-Time Markov Chains (DTMCs), CTMCs [13], Markov
Decision Processes (MDPs) [14], and Probabilistic Timed Automata (PTAs) [15],
with optional extensions of costs and rewards. PRISM models are expressed using
the PRISM modelling language, which is based on the Reactive Modules formal-
ism [16]. A PRISM model consists of the parallel composition of a number of
modules. Each module is declared in the following way:

module name ... endmodule

A module consists of a list of variable declarations and a list of commands. At
any moment, the state associated with a PRISM model is a valuation of all of
the variables in the specification. A variable declaration consists of a variable
name together with a list of possible values and an initial value. E.g.:

x : [0..4] init 0;
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Fig. 3. Semi-Markov chains for multi-state failure mode of satellite subsystems: dotted
arrows represent transitions following an exponential distribution (Exp) or Weibull
distribution with increasing failure rate (IFR), and solid arrows represent transitions
following a Weibull distribution with decreasing failure rate (DFR)

Every command consists of a guard and a non-deterministic choice of updates.
Each update has an associated real-value rate. For example:

[syncLabel] guard → rate1 : update1 + rate2 : update2 + ...

Note that the initial label (syncLabel in this example) is optional, and allows for
multi-module synchronisation.
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3.3 Continuous Stochastic Logic

In this paper, we use Continuous Stochastic Logic (CSL) [17] to specify prop-
erties. There are two types of formulae in CSL: state formulae, which are true
or false in a specific state, and path formulae, which are true or false along a
specific path. One of the most important operators is the P operator, which is
used to reason about the probability of an event. The P operator is applicable
to all types of models supported by PRISM. It is often useful to compute the
actual probability that some behaviour of a model is observed. Thus, a variation
of the P operator to be used in PRISM, i.e., P=?[pathprop], which returns a
numerical rather than a Boolean value (i.e., the probability that pathprop is
true). For example, we might wish to calculate the probability that j = 1 is true
within the first T time units. This can be specified as P=?[F ≤ T j = 1], where
F is the “eventually” temporal operator.

4 Approximation of Weibull Failure Models

4.1 Weibull Distributions

In systems engineering, the Weibull distribution [18] is one of the most exten-
sively used lifetime distributions for reliability analysis. It includes two parame-
ters: (1) the shape parameter γ and (2) the scale parameter α, together with
key formulas such as cumulative density function (CDF) and probability density
function (PDF). A Weibull PDF is expressed as:

f(t; γ, α) =
γ

α
(
t

α
)γ−1e−( t

α )γ

, t ≥ 0, γ, α > 0 (1)

and a Weibull CDF as:
F (t; γ, α) = 1 − e−( t

α )γ

(2)

We abbreviate f(t) and F(t) as the PDF and CDF of the Weibull distribution
respectively, then the instantaneous failure rate is f(t)

1−F (t) . The failure rate is
proportional to a power of time t. The shape parameter, γ, is equal to this
power plus one.

The semantics of the Weibull distributions (also known as the bathtub curve)
with different γ can be shown in Fig. 4 and explained as follows: (1) γ < 1 means
that the failure rate decreases over time (decreasing failure rates). This occurs
whenever a clear infant mortality3 exists, and the failure rate decreases over time
as the failure is discovered and the subsystem removed; (2) γ = 1 means that
the failure rate is constant at any time. This is the useful life of the satellite; (3)
γ > 1 means that the failure rate increases with time (increasing failure rates).
It occurs whenever a wear out exists, or a subsystem failure becomes more likely
over time.

Generally, the ways to approximate the Weibull distributions is non-trivial.
The simple technique of phase-type distributions is useful in some cases. Thus,
3 Infant mortality: a subsystem fails early due to defects designed into or built into it.
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Fig. 4. Semantics of the Weibull distribution (the bathtub curve)

we follow this line of work that Weibull IFR approximated by a M-stage Erlang
distribution and Weibull DFR by a hyper-exponential distribution since there
are intuitive and strong justifications for the model [3,8]. Further, these general
distributions provide simple mathematical structures such that the their under-
lying semi-Markov chains can be included in the Markov model framework.

4.2 Increasing Failure Rates (IFR)

A simple technique for the realisation of approximations to the Weibull distrib-
ution models is matching moments, where the mean is the first moment and the
variance the second. We first consider the approximation of a Weibull distrib-
ution modelling increasing failure rates (IFR) using an M-stage Erlang distrib-
ution [19], which belongs to the class of phase-type distributions. The M-stage
Erlang PDF can be expressed as:

f(t;M,λ) =
λM

Γ (M)
xM−1e−λx, t ≥ 0, λ > 0 (3)

The Erlang CDF can be expressed as:

F (t;M,λ) = 1 − e−λx
M−1∑

n=0

(λt)n

n!
(4)

According to [8], we have the first two moments of the M-Erlang:

m1 =
M

λ
, m2 =

M(M + 1)
λ2

(5)
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Table 1. Difference between the Weibull distribution with IFR and its approximation
as an Erlang distribution: i is the index of the semi-Markov chain for the corresponding
satellite subsystem, and xy is the transition from state x to state y

P i
xy Weibull distribution with IFR Erlang distribution

γ α k λ

P 1
34 1.1593 17 2 0.1239

P 4
13 1.1229 664 2 0.0031

P 4
35 1.0366 15 2 0.1353

P 6
34 1.2452 16 5 0.3352

P 7
35 28.6487 9 20 2.2652

P 11
24 2.8232 23 3 0.1464

As a result, we have:

M =
m2

1

m2 − m2
1

, λ =
m1

m2 − m2
1

(6)

where m1 and m2 are equal to the first two moments of the Weibull distribution
with IFR, and are given as follows:

m1 = αΓ (
γ + 1

γ
), m2 = α2Γ (

γ + 2
γ

) (7)

The value of M is rounded to the nearest integer and the value of λ recalcu-
lated depending on this rounded value, so that the mean is matched.

For example, we consider Weibull parameters for the control processor. The
Weibull parameters for the reliability of this subsystem are given by: γ = 1.4560,
α = 408 (years). Then, according to Eqs. 6, 7 and 8, M = 2 and λ = 0.0054
for the M-Erlang distribution. Using the Erlang distribution, the approximation
result of the Weibull distribution with increasing failure rate for the relevant
satellite subsystems is given in Table 1.

4.3 Decreasing Failure Rates (DFR)

The procedure for approximating the Weibull distribution with decreasing fail-
ure rates (DFR) by hyper-exponential distributions [20] can be summarised as
follows, for details see [3].

First, we choose the number k of exponential components and k arguments:
m1 > ... > mi > mi+1 > ... > mk, for which the ratios mi

mi+1
have to be

sufficiently small (e.g., mi

mi+1
≥ 10).

Second, we choose the number n such that for all i, 1 < n < mi

mi+1
.

Then, for the Weibull distribution CDF (see Eq. (3)), we have a complemen-
tary CDF (CCDF) given by:

F c(t; γ, α) = 1 − F (t; γ, α) = e−( t
α )γ

(8)
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and we choose λ and p1 to match the CCDF F c(t; γ, α) (we abbreviate F c(t; γ, α)
as F c(t)) at the arguments m1 and nm1, so we solve the following equation:

p1e
−λ1m1 = F c(m1), p1e

−λ1nm1 = F c(nm1) (9)

for p1 and λ1. As a result, we obtain:

λ1 =
1

(n − 1)m1
ln

(
F c(m1)
F c(nm1)

)
, p1 = F c(m1)eλ1m1 (10)

Then, for 2 ≤ i ≤ k, we have:

F c
i (mi) = F c(mi) −

i−1∑

j=1

pje
−λjmi , F c

i (nmi; ) = F c(nmi) −
i−1∑

j=1

pje
−λjnmi (11)

and similarly, we solve the further equation:

pie
−λimi = F c

i (mi), pie
−λinmi = F c

i (nmi) (12)

for pi and λi when 2 ≤ i ≤ k − 1. As a result, we obtain:

λi =
1

(n − 1)mi
ln

(
F c

i (mi)
F c

i (nmi)

)
, pi = F c

i (mi)eλimi (13)

Finally, for i = k, we can have:

pk = 1 −
k−1∑

j=1

pj , pke−λkmk = F c
k (mk), λk =

1
mk

ln

(
pk

F c
k (mk)

)
(14)

Using the hyper-exponential distribution, the approximation result of the
Weibull distribution with decreasing failure rate for the relevant satellite sub-
systems is given in Table 2. For clarity, we only give the distribution for the
subsystem (1), which is Gyro/sensor/reaction wheel.

Table 2. Difference between the Weibull distribution with DFR and its approximation
as a hyper-exponential distribution: i is the index of the semi-Markov chain for the
corresponding satellite subsystem, and xy is the transition from state x to state y

P i
xy Weibull distribution with DFR Hyper-exponential distribution

γ α p1 λ1 p2 λ2 p3 λ3 p4 λ4

P 1
12 0.4482 12,526 0.8149 0.000117 0.1258 0.0038 0.0384 0.0433 0.0210 0.8802

P 1
13 0.4334 80,050 0.9074 0.000052 0.0630 0.0037 0.0189 0.0434 0.0108 0.9015

P 1
14 0.3815 210,126 0.9133 0.000039 0.0548 0.0038 0.0188 0.0444 0.0131 0.9903

P 1
15 0.5635 65,647 0.9518 0.000045 0.0377 0.0034 0.0077 0.0408 0.0028 0.7348

P 1
23 0.8229 59 0.0933 0.007895 0.6383 0.0132 0.2326 0.0458 0.0359 0.5320

P 1
24 0.5600 4,003 0.7852 0.000218 0.1631 0.0037 0.0378 0.0411 0.0139 0.7382

P 1
35 0.7115 221 0.3461 0.001866 0.5000 0.0058 0.1258 0.0404 0.0281 0.6022

P 1
45 0.4703 135 0.2068 0.000988 0.4133 0.0058 0.2396 0.0466 0.1404 0.8653
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5 Encoding the Weibull Models with CTMCs in PRISM

5.1 Encoding the Weibull Distribution with IFR

The approximation of the non-exponential sojourn time distributions can be
realised via the insertion of one or more intermediate states between any existing
deterioration transition. We approximate a Weibull IFR with an Erlang distri-
bution. In Fig. 5(a), k

λ is the time taken for transition from state A to state H.
Thus, in order to approximate the interval, the total number of existing deterio-
ration transitions is k − 1 = 7. The transition rate is proportional to k, ensuring
a constant total transition time.

Consider the PRISM model in Fig. 6. Labelled action sync occurs with an
Erlang distribution with scale μ and shape k. For the purpose of the analysis,
the CSL formula used is: P=?[F ≤ T j = 1], expressing the probability that a
satellite subsystem will fail in T years. In Fig. 7, we show the probability curve
of the sojourn time for various values of k, where k = 1, 2, 5, 10, 100.

Figure 7 shows the results of using PRISM (on our CTMC model) to
approximate the probability distribution with a constant sojourn time (i.e. of
P=?[F ≤ T j = 1] for various values of k, where k = 1, 2, 5, 10, 100) for both
100 years and 15 years. This is useful for modelling failure rates with multiple
states, while guaranteeing the Markov property. In addition, a significant trade-
off exists between the accuracy and the underlying expansion in the state space
of the model. For example, when k = 100, we can see from Fig. 7(a), that the
approximation is very close to the actual distribution. However, increasing k by
a factor of 100 increases the size of the underlying model by 100.

To understand the differences better, we compare the CDF of the original
Weibull IFR distribution with its approximation as an Erlang distribution and
its implementation as a CTMC model in PRISM. As shown in Fig. 8(a), the
difference between Weibull and the other two curves apparently tends to zero,
indicating the approximation and implementation both to be accurate for right
long tail probabilities. In Fig. 8(b), we see that the difference is at most 0.05,
this is due to the fact that we lose a little accuracy in order to reduce the size
of the state space associated with our PRISM model.

Fig. 5. Modelling the Weibull distribution with CTMCs
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Fig. 6. Encoding the Weibull distribution with IFR in PRISM

Fig. 7. Results of encoding the Weibull distribution with IFR in PRISM

Fig. 8. Comparison between the Weibull distribution with IFR, its approximation, and
PRISM encoding
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5.2 Encoding the Weibull Distribution with DFR

We approximate a Weibull DFR with an hyper-exponential distribution, which
is a mixture of exponential distributions. The hyper-Erlang distribution is also a
generalisation of the hyper-exponential distribution. So, the hyper-exponential
distribution also belongs to the class of phase-type distributions. In general, it
can be represented with respect to the time until absorption in a CTMC. For
instance, a hyper-exponential distribution having four branches ((p1,λ1), (p2,λ2),
(p3,λ3),(p4,λ4)) can be represented by a CTMC model as shown in Fig. 5(b).
Dotted arrows indicate instantaneous probabilistic transitions, and solid arrows
transitions with exponentially distributed durations.

In Fig. 9, we encode the behaviour of the CTMC in Fig. 5(b) using PRISM.
For CTMC, updates in commands are labelled with positive-valued rates, rather
than probabilities. Since there are four transitions leaving state 0 which are all
instantaneous, if we make the probabilistic choice between them, the states with
instantaneous transitions can be removed to construct the underlying CTMC.

Figure 10 shows the results of using PRISM (on our CTMC model – see
Fig. 9) to approximate the probability distribution of a constant sojourn time
(i.e. of P=?[F ≤ T s = 5] for k = 2, 3, 4, 5 for both 100 years and 15 years).
Although there is trade-off between the accuracy and the size of the resulting
state space between k = 2 and k = 4, the difference is not so obvious between
k = 4 and k = 5. Therefore, we consider k = 4 to be a good approximation
parameter for the implementation of Weibull DFR in PRISM.

For the same purpose, we compare the CDF of the original Weibull DFR
distribution with its approximation in a hyper-exponential distribution and its
implementation with a CTMC in PRISM. As shown in Figs. 11(a) and (b), for
a time scale (α = 5000 years), the difference between the Weibull DFR and
the other two curves in the left short head is at most 0.01, and in the right long
tails apparently becomes zero, indicating the approximation and implementation
both to be accurate for a short scale for both left short head and right long
tail probabilities. Though for a large scale (α = 50000 years) in Fig. 11(c), we

Fig. 9. Encoding the Weibull distribution with DFR in PRISM
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Fig. 10. Results of encoding the Weibull distribution with DFR in PRISM

Fig. 11. Comparison between the Weibull distribution with DFR, its approximation,
and PRISM encoding

can see that the difference can be very large in the right long tails. However, in
Fig. 11(d), for T ≤ 15 years, the approximation and implementation both appear
to be accurate for large scale and left short head probabilities.
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6 Conclusion and Future Work

We have shown that difficulties in modelling the Weibull distribution for satel-
lite failures can be handled if appropriate approximations and modelling meth-
ods are considered. We have also proposed novel non-exponential models that
characterise failure behaviours, based on Weibull failure modes (both increas-
ing failure rates and decreasing failure rates) inferred from real-world datasets.
We have approximated and encoded these new models with CTMCs in PRISM,
and shown their approximation is accurate in matching a Weibull distribution
in isolation.

The key contribution of this work is that the CTMCs-based formalisms come
equipped with mature model checking tools, such as PRISM and so allow a
wide range of analyses relevant to industrial critical systems to be performed
automatically and efficiently. In future work, it would be interesting to see how
their approximation matches the true distribution when multiple distributions
are combined, e.g. when constructing a model for an entire satellite or a subset
of subsystems. Another interesting direction is to use various techniques such as
symmetry reduction [21,22] for reducing the state space of the approximation.
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